

VSL

National Metrology Institute

MetCCUS: Metrology support for Carbon Capture Utilisation and Storage

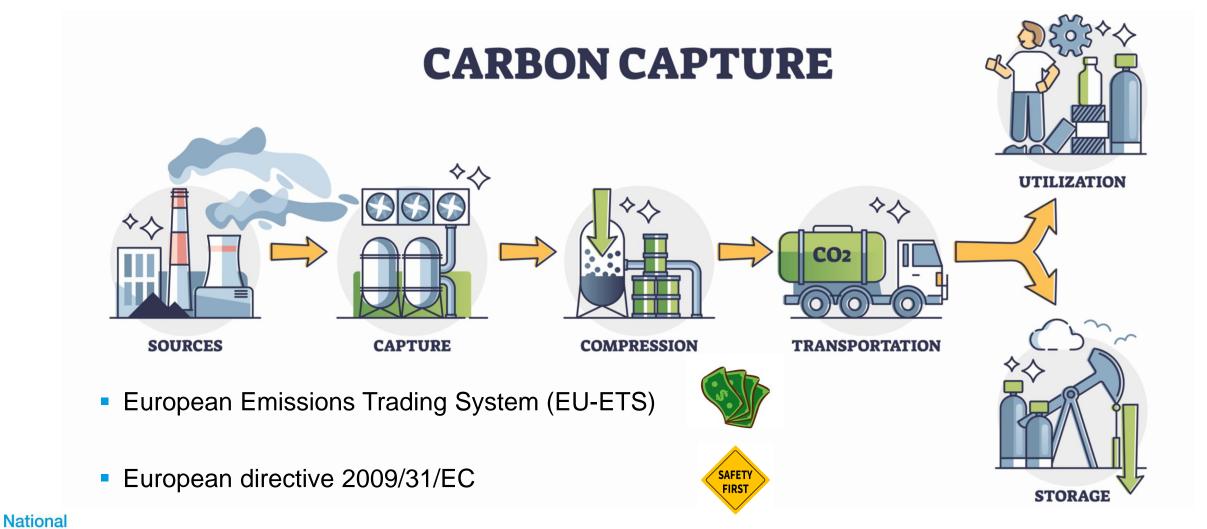
EMN for Energy Gases Workshop Iris de Krom 31 October 2024 – Online

VSL Carbon Capture Utilization and Storage (CCUS)

- Climate change
- Reduce greenhouse gas emission
 - 55 % by 2023
 - Carbon Neutral by 2050

• European Green Deal \rightarrow Clean Energy

10 10


- Clean hydrogen
- Fuel cells and alternative fuels
- Energy storage
- CCUS
 - Decrease CO₂ emissions
 - Primary greenhouse gas

Metrology Institute

31-10-2024

Metrolog

Institute

/SL Metrology support for CCUS

OAirLiquide **O**SINTEF DNV IPO,

1 October 2022 – 30 September 2025

B_Justervesenet

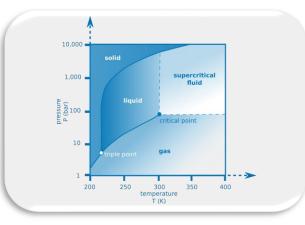
21 participants

"The project has received funding from the European Partnership on Metrology, co-financed by European Union Horizon Europe Research and Innovation Programme and from the Participating States."

VSL CCUS measurement challenges

Flow metering

Chemical metrology



National Metrology Institute

Emission monitoring

Physical properties

VSL Flow metering

Gas flow

- Metrology infrastructure for monitoring CO₂ flow
 - < 50 m³/h and low pressure
 - Up to 400 m³/h and higher pressure
- Primary and transfer standards
 - Intercomparison
 - Theoretical investigate the impact of impurities on transfer standards
 - Uncertainty 1.5 % 2.5 %

Liquid flow

31-10-2024

National Metrology Study to determine the current state of the art of traceable liquid CO₂ flow measurement and liquid CO₂ primary standard requirements → <u>https://zenodo.org/records/11118645</u>

CCS fiscal metering

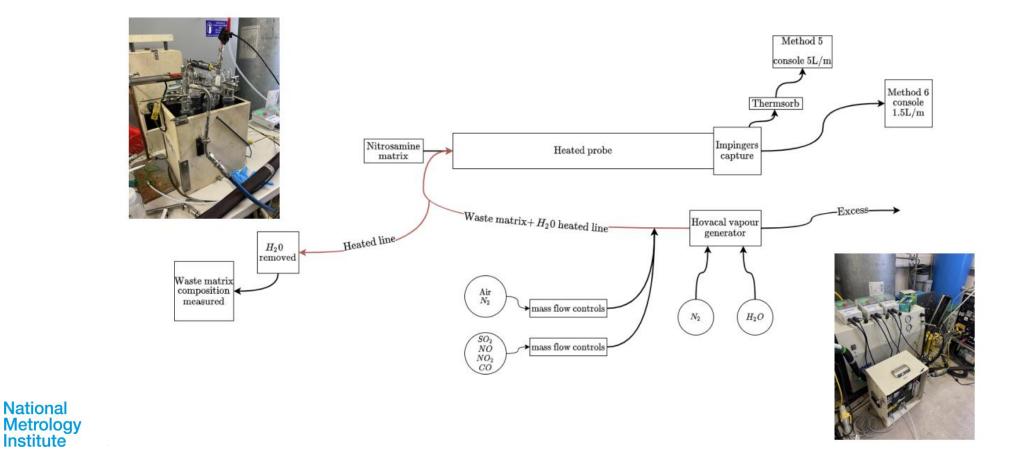
Good practice guide

VSL Flow metering – primary calibration facilities

- Primary facilities for gaseous CO₂
 - < 50 m³/h and atmospheric 0.3 MPa
 - Up to 400 m³/h and up to 20 MPa
- Validation and transferability between CO₂ and N₂ experiments are finalized
- Intercomparison of the different facilities started

L Emission monitoring

- Review requirements for monitoring pollutants in CO₂ in the emission from ducts and flues from carbon capture processes
 - Focus on pollutants from amine capture → gas matrix and methods for monitoring nitrosamines/amines have been identified → facilities have been developed to generate test matrices to test monitoring methods
- Review performance requirements for the detection of CO₂, including leak monitoring techniques based on EN 1779.
- Detection and quantification of CO₂ emissions from geological storage
 - Isotopic measurements
 - Addition of tracers
 - Use of acoustic techniques

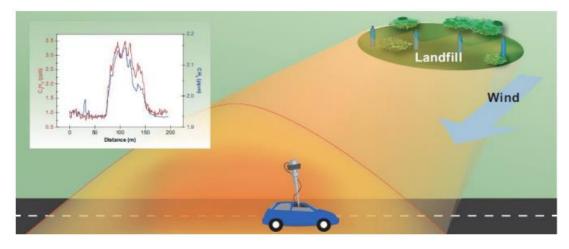

National

Institute

Emission monitoring - Nitrosamines

METCCUS

- Methods for monitoring nitrosamines
 - Sorbent trap method dilution to dry sample -
 - Wet chemistry based on EN1479 Thermo-sorb sulfamic acid impinger solution —



- Controlled Release Facility modified to produce CO₂ leaks
 - used to access CO₂ imaging camera

Tracer correlation methods

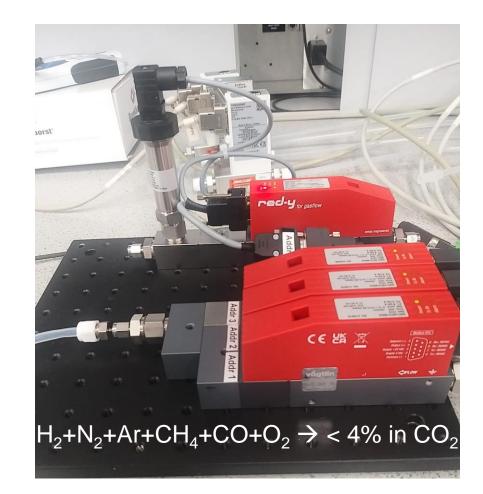
METCCUS

PIR

• Subsea leakage \rightarrow review of acoustic techniques \rightarrow <u>link</u>

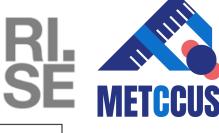
VSL Chemical metrology

- Primary reference materials for impurities in CO₂ → <u>https://zenodo.org/records/8421450</u>
 - Key impurities e.g.; H₂O, NO_x, sulphur compounds, hydrocarbons, alcohols and amines
 - Permanent gases: O₂, Ar, N₂, CH₄, CO, H₂
- Material compatibility for CO₂ sampling → <u>https://zenodo.org/records/8421721</u>
- Online CO₂ monitoring
 - Development and validation of online methods
 - Round Robin Test for the measurement of impurities in CO₂
- Offline analytical methods for CO₂ quality
 - CO₂ capture, transport and storage
 - CO₂ conversion, utilisation and recycling



Static gas mixtures (ISO 6142)

1.1.1.1 in CO_2 : 1) H_2S , CO, O_2 and CH_2 2) N_2 , H_2 , CH_4 , N_2O , SO_2 , NO_2 3) CH_4 , Ar, N_2 , H_2 , O_2 , CO, $NO SO_2$ Dynamic gas mixtures (ISO 6145)



National Metrology Institute

Chemical metrology – CO₂ sampling

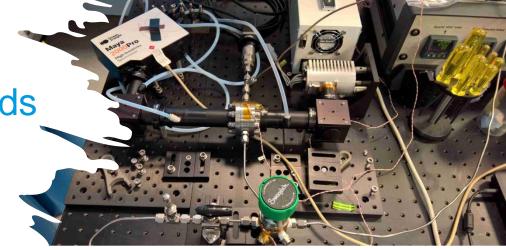
Component	Amount fraction	Restek.	Restek	Calibrated Instruments Inc	Airborne Labs
	(µmol/mol)	Multifoil	Altef	Cali5Bond	True Blue 2LT
Methanol	<u>4-8</u>	Stable at least 30 days (loss	Concentration decreases	25-35% loss D1, then stable	Concentration decreases with time.
		< 20% after D50)	quickly with time		
	10-15	Stable at least 30 days (loss		25-35% loss D1, then stable	Concentration decreases with time.
		< 20% after D50)	quickly with time		
Acetaldebxde	0.5	Stable at least D30			More than 20% loss D30
	1	Stable at least D30			15% loss D30
	4-8	Stable at least D30			
	10-15	Stable at least D30			
Ethanel	4-8	20-25% loss D50. Analysis	Concentration decreases	35% loss D4, then stable	20-25% loss D50. Analysis before D10
		before D10	quickly with time		
	10-15	20-25% loss D50. Analysis		35% loss D4, <u>then stable</u>	
		before D10			
Acetone	4-8	Max 15% loss D50	Concentration decreases	Stable at least D7	Max 15% loss D50
			quickly with time		
	10-20	Max 15% loss D50		Stable at least D7	Max 15% loss D50
Benzene	0.3 - 2	Not compatible as benzene	Stable at least D4		Stable at least D20 but recovery at D0
		adsorbs on the walls			unknown
	7	Not compatible as benzene			
		adsorbs on the walls			
Hydrogen sulphide	Ca 2			100% loss D30. Analysis	
				before D5	
	Ca 10			50% loss D30. Analysis before	
				D5	
	Ca 20			35% loss D30. Analysis before	
				D5	
	Ca 40			20% loss D30	
	Ca 60			15% loss D30	
	Ca 100			Less than 10% loss D30	

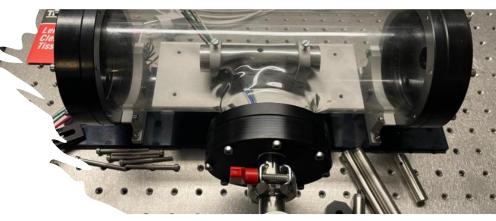
National Metrology Institute

³¹⁻¹⁰⁻²⁰²⁴ Report: Experiments to test the sampling of impurities, against material, for key impurities and materials \rightarrow link ¹³

SL Chemical metrology – monitoring methods

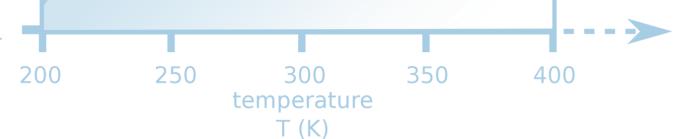
- Photoacoustic spectroscopy for leak and purity monitoring
- Gas sampling and (far-UV)/FTIR-based analyser


Demonstration at an industrial site



Round robin for gas analysis capabilities of new and commercial monitoring methods against primary reference materials

VSL Physical properties

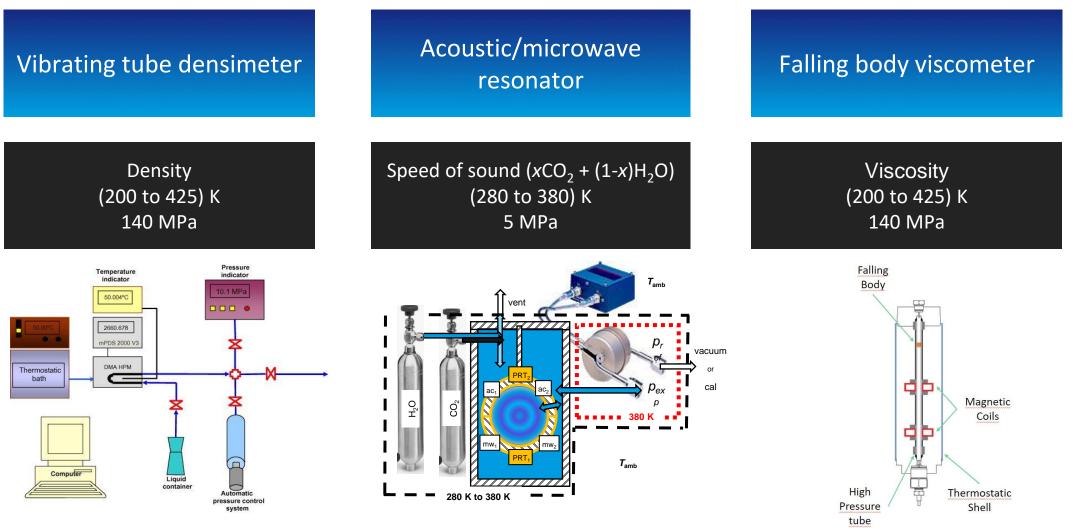


Experimental measurements CO₂ mixtures with MEA and DEA →
 <u>https://zenodo.org/records/1119890</u>
 use - Density, Speed of sound, Viscosity and Heat capacity

Equation of state models relevant for CCUS processes and Flow metering

00

- EoS-CG 2019
- GERG-2008
- Monitoring CCUS infrastructures
 - Corrosion testing of CO₂ pipeline materials
 - Calibration method for online humidity sensors used in CCUS processes
 - Online measurement equipment for impurities in CO₂


critical point

L Physical properties

31-10-2024

National Metrology Institute

SL Conclusion

- Developments in MetCCUS
 - Primary standards and reference materials
 - Calibration and measurement methods
 - Good practice guides
 - Literature reviews & peer reviewed articles

Support

- CCUS industry to comply with EU ETS and Directives
 - Track the amount of carbon
 - Safe operation of CCUS technologies
- Development of key documentary standards, specifications and regulation
- Effective implementation of CCUS technologies
- CCUS industry to become carbon neutral and overcome climate change

Thank you for your attention

- Visit
 - <u>www.metccus.eu</u>
 - MetCCUS: Overview | LinkedIn

Contact
Project coordinator
Iris de Krom
idekrom@vsl.nl

